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1. Introduction

In the Grid Computing paradigm of Advanced Reservation it is necessary to
appoint a Program Execution Plan according to which jobs are distributed
and run on the compute Grid nodes. The advantage hoped for, over
traditional approaches based on job-queues, 1is a guaranteebility in
Quality of Service, esp. regarding the fulfilment of deadlines [1].

That demands for a novel Plan-Based Scheduler in addition to the common
Queue-Based Schedulers in nowadays Operating System (0S) Kernels [2].

Given the striven for flexibility of a Grid's structure and the
heterogenity of the participating nodes it seems, that the required
planning functionalities should be addable to the nodes' 0S Kernel in
runtime. Therefore the on-demand integration of a Plan-Based Scheduler in
an already running OS via a Loadable Kernel Module [3], as simplifiedly
depicted in Fig.1, shall be discussed in this thesis.

Grid Compute Node

(G 7

///’— Running —\\\\ Program

Operating System Behavior

Modeling

load ( )
Loadable PBS/RMS
Kernel CarE I\II(Ie:jm:I | IOCfTL PBS
""""""""" odule
nterface
(iocTL | :
Program Program
Execution Plan Behavior Model

RMS Stub -

Fig.1 Implementing a Plan-Based Scheduler (PBS) as a Loadable Kernel Module,
communicating with a Resource Management System (RMS) Stub via an interface

employing the Kernel's I/0 Control (IOCTL) facility. The parts to be developed
in this thesis are marked grayish.
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2. Objective

The thesis' goal is to examine the feasibility of a placement of the
Plan-Based Scheduler into a Loadable Kernel Module. That requires the
following.

1. Development of a Loadable Kernel Module to extend the 0S Kernel by
a Plan-Based Scheduler,

2. Implementation of a RMS Stub as a user space program to monitor the
functionality of the loaded PBS kernel module, because a fully
functional RMS is not, resp. not yet, available,

3. Simple test of the such extended Kernel regarding the acceptance,
execution and monitoring of a plan-based program run, and

4. Testing the integrity of the O0S after the Loadable Plan-Based
Scheduler Kernel Module's removal, i.e. basically that the wusual
mode of working of the 0S is ensured.

3. Environment

In principle the intended procedure should be applicable likewise on a
series of 0Ss, inter alia Linux [3], FreeBSD [4], and even Windows [5].
Thereby of course also the heterogenity of Grids would be supported.

In this thesis it will be experimented with Debian GNU/Linux firstly --
as a Guest 0S in a QEMU-based Virtual Machine to avoid peril for the
integrity of the computer's 0S.
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