Bachelor Thesis Proposal

Loadable Plan-Based Scheduler Kernel Module
Feasibility Study

Michael Zent

Supervisor
Barry Linnert

Institute for Computer Science
Freie Universitat Berlin

1. Introduction

In the Grid Computing paradigm of Advanced Reservation it is necessary to
appoint a Program Execution Plan according to which jobs are distributed
and run on the compute Grid nodes. The advantage hoped for, over
traditional approaches based on job-queues, 1is a guaranteebility in
Quality of Service, esp. regarding the fulfilment of deadlines [1].

That demands for a novel Plan-Based Scheduler in addition to the common
Queue-Based Schedulers in nowadays Operating System (0S) Kernels [2].

Given the striven for flexibility of a Grid's structure and the
heterogenity of the participating nodes it seems, that the required
planning functionalities should be addable to the nodes' 0S Kernel in
runtime. Therefore the on-demand integration of a Plan-Based Scheduler in
an already running OS via a Loadable Kernel Module [3], as simplifiedly
depicted in Fig.1, shall be discussed in this thesis.

Grid Compute Node

(G 7

///’— Running —\\\\ Program

Operating System Behavior

Modeling

load ()
Loadable PBS/RMS
Kernel CarE I\II(Ie:jm:I | IOCfTL PBS
""""""""" odule
nterface
(iocTL | :
Program Program
Execution Plan Behavior Model

RMS Stub -

Fig.1 Implementing a Plan-Based Scheduler (PBS) as a Loadable Kernel Module,
communicating with a Resource Management System (RMS) Stub via an interface

employing the Kernel's I/0 Control (IOCTL) facility. The parts to be developed
in this thesis are marked grayish.

1/2

2. Objective

The thesis' goal is to examine the feasibility of a placement of the
Plan-Based Scheduler into a Loadable Kernel Module. That requires the
following.

1. Development of a Loadable Kernel Module to extend the 0S Kernel by
a Plan-Based Scheduler,

2. Implementation of a RMS Stub as a user space program to monitor the
functionality of the loaded PBS kernel module, because a fully
functional RMS is not, resp. not yet, available,

3. Simple test of the such extended Kernel regarding the acceptance,
execution and monitoring of a plan-based program run, and

4. Testing the integrity of the O0S after the Loadable Plan-Based
Scheduler Kernel Module's removal, i.e. basically that the wusual
mode of working of the 0S is ensured.

3. Environment

In principle the intended procedure should be applicable likewise on a
series of 0Ss, inter alia Linux [3], FreeBSD [4], and even Windows [5].
Thereby of course also the heterogenity of Grids would be supported.

In this thesis it will be experimented with Debian GNU/Linux firstly --
as a Guest 0S in a QEMU-based Virtual Machine to avoid peril for the
integrity of the computer's 0S.

4, References

[1] L.-0.Burchard, M.Hovestadt, 0.K.A.Keller, and B.Linnert, "The virtual
resource manager: An architecture for SLA-aware resource management",
in 4th Intl. IEEE/ACM CCGrid 2004, Chicago, USA, 2004.

[2] J.Schneider and B.Linnert, "List-based Data Structures for Efficient
Management of Advance Reservations"”, Int. J. Parallel Prog. 42:77-93,
2014. [Online] Available: http://dx.doi.org/10.1007/s10766-012-0219-4

[3] P.J.Salzman et al., The Linux Kernel Module Programming Guide, 2023.
[Online] Available: https://sysprog21.github.io/lkmpg

[4] "Dynamic Kernel Linker Facility", in FreeBSD Architecture Handbook,
2023, ch.9, sec.2, pp.157-158. [Online] Available:
https://docs.freebsd.org/en/books/arch-handbook

[5] R.D.Reeves, "Kernel Mode Drivers", in Windows 7 Device Driver,
Boston, MA, US: Addison-Wesley, 2010, pp.148-321.

2/2

http://dx.doi.org/10.1007/s10766-012-0219-4
https://docs.freebsd.org/en/books/arch-handbook
https://sysprog21.github.io/lkmpg/

