
Structure and Evolution of Package Dependency
Networks

Riivo Kikas
University of Tartu

Tartu, Estonia

riivokik@ut.ee

Georgios Gousios
Delft University of Technology

Delft, The Netherlands

g.gousios@tudelft.nl

Marlon Dumas
University of Tartu

Tartu, Estonia

marlon.dumas@ut.ee

Dietmar Pfahl
University of Tartu

Tartu, Estonia

dietmar.pfahl@ut.ee

Abstract—Software developers often include available open-
source software packages into their projects to minimize redun-
dant effort. However, adding a package to a project can also
introduce risks, which can propagate through multiple levels of
dependencies. Currently, not much is known about the structure
of open-source package ecosystems of popular programming
languages and the extent to which transitive bug propagation is
possible. This paper analyzes the dependency network structure
and evolution of the JavaScript, Ruby, and Rust ecosystems. The
reported results reveal significant differences across language
ecosystems. The results indicate that the number of transitive
dependencies for JavaScript has grown 60% over the last year,
suggesting that developers should look more carefully into their
dependencies to understand what exactly is included. The study
also reveals that vulnerability to a removal of the most popular
package is increasing, yet most other packages have a decreasing
impact on vulnerability. The findings of this study can inform
the development of dependency management tools.

I. INTRODUCTION

Open-source software development has resulted in an abun-

dance of freely available software packages (libraries) that can

be used as building blocks for new projects. Usage of existing

libraries can increase velocity and reduce the cost of a software

project [1]. However, introducing third-party libraries makes

a project dependent on them. Dependencies need to be kept

up-do-date to prevent exposure to vulnerabilities and bugs [2].

At the same time, bugs can also originate through transitive

dependencies [3]. Developers might not have an overview of

all the transitive dependencies as they did not include them

themselves. Updating dependencies also entails risks, as new

versions may break existing functionality or API correctness

[4].

In March 2016, a single JavaScript package, left-pad was

removed from the central JavaScript package repository npm.

The removal caused issues also for projects that depended

on it indirectly through transitive dependencies [5]. The left-
pad incident illustrates the hidden risks of relying on publicly

available packages. A problem with a single package can

propagate through multiple levels of dependencies.

Over the years, a number of studies have addressed the

question of how to develop maintainable software and how to

cope with software evolution challenges [6], [7]. On the other

hand, dependency management practices have received little

attention, despite being a crucial part of almost all software

projects. A recent study of the JavaScript package ecosystem

[8] revealed that dependency requirement specifications using

semantic versioning with flexible version constraints (e.g. the

latest version) are widely used. This practice often leads to

a new version of dependency being used implicitly every

time a project is built. Another study of Maven packages [4]

revealed that the semantic versioning scheme is not always

used properly and breaking changes are also introduced in

minor version releases. Implicit updates combined with non-

conforming API changes can introduce unexpected behavior or

software defects. Considering the left-pad incident and the lack

of studies on dependency management, we seek to enhance the

understanding of the state of dependency update practices and

the structure of dependency networks.

More recently, data has become available from package

repositories and GitHub repositories that enable us to study

the package ecosystems of different programming languages.

Having access both to packages that are published in a central

repository and applications using these can give us an idea

how often dependencies are updated and what is the state of

the dependency ecosystem.

In this work, we take a novel network-based approach

for studying dependency networks of JavaScript, Ruby, and

Rust. We use data from package repositories and a subset of

GitHub projects. We compose a network of projects based

on dependency relations to understand how the dependency

network evolves and how susceptible it is to a removal of a

random project. We show that dependency networks of popular

languages such as JavaScript and Ruby are growing and have

at least one single package whose removal can affect more

than 30% of projects in the ecosystem.

The goal of this work is to study the state of current

dependency networks, to understand their characteristics, and

to reason about their future evolution. We have formulated the

following research questions to guide our research:

RQ1: What are the static characteristics of package depen-
dency networks?
RQ2: How do package dependency networks evolve?
RQ3: How vulnerable are package dependency networks to a
removal of a random project?

Answers to these questions can help to quantify the state of

the ecosystems, give an overview of the trends in dependency

management, and can inform the development of improved

dependency management tools.

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE

DOI 10.1109/MSR.2017.55

230

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE

DOI 10.1109/MSR.2017.55

102

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE

DOI 10.1109/MSR.2017.55

102

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE

DOI 10.1109/MSR.2017.55

102

Authorized licensed use limited to: Technische Universitaet Berlin. Downloaded on December 23,2023 at 19:45:21 UTC from IEEE Xplore. Restrictions apply.

II. BACKGROUND AND RELATED WORK

In this section, we explain the terminology and give an

overview of the related work.

A. Terminology

Current work analyses dependencies among software

projects. We distinguish between two types of software

projects: packages and applications. We define packages as

a reusable code or set of components that can be included

in other applications by using dependency management tools.

Packages are published in repositories and are available to

everyone. Applications are projects that make use of packages,

are not published as a package and thus can not be used in

other projects as a dependency. Packages and applications can

have multiple versions distinguished by version numbers.

A package can depend on another package. If package A

depends on package B we say that A has a dependency (A

is a dependent of B) and B has a reverse dependency (B has

a dependent). Applications can have dependencies but since

they are not published as a reusable package they cannot have

reverse dependencies. A project has a direct dependency if a

package on which the project depends, and which it needs

to be built, is directly included in the project. A project can

have a transitive dependencies on packages that are not needed

for the project itself but needed for the direct dependencies

included in the project to work. Transitive dependencies can

be included through multiple levels of dependencies.

A dependency network is composed of packages, applica-

tions, and dependency relations between them. An ecosystem
is the set of packages and applications involved in the depen-

dency network.

B. Related work

The related work deals with analyzing dependency net-

works, analyzing risks associated with dependency usage, and

API stability in libraries.

Dependency networks. Network-based analysis of pro-

gramming language dependency networks has emerged re-

cently. A first large-scale analysis of the npm ecosystems was

carried out by Wittern et al. [8]. Their analysis concludes

that JavaScript is a striving ecosystem because of frequent

releases of new and existing packages. They use GitHub

applications only to study version numbering practices and

state that there is a prevalence of flexible (not exact) version

number specifications. They conclude that usage of flexible

version constraints should result in the immediate adoption of

a new release.

Decan et al. [9] analyze topologies of npm, PyPI, and

CRAN and find that there are differences across ecosystems,

e.g., the PyPI is less interconnected than npm. They state that

analysis results are not generalizable from one ecosystem to

another. Their follow-up work [10] focusing on dependency

version specification usage analysis, points out that current

tools and versioning schemes can introduce resiliency issues

to the ecosystem.

German et al. [11] study packages in the R ecosystem. They

find that most packages do not have any dependencies, but

popular ones are more likely to have. They also find that

growth of the ecosystem comes from user-submitted packages,

and it takes a longer time to build a community around user-

submitted packages than around core contributed packages.

Another analysis of the R ecosystem [12] studies dependency

resolution in R packages finds that lack of dependency con-

straints in package descriptions and backward incompatible

changes often break dependencies. As community contributed

packages are hosted on GitHub, there is no way to resolve

dependencies among GitHub packages, and therefore a small

amount of GitHub packages cannot be automatically installed.

Bogart et al. [13] interview seven maintainers of R and npm
packages to understand how dependencies are maintained.

They find that developers are not aware of the stability of

packages in the ecosystems and make changes on ad-hoc

principles. In a follow-up work [14], they found that npm,

CRAN and Eclipse ecosystems differ substantially in their prac-

tices about resolving API breaking conflicts and expectations

toward change.

Dependency management. A study of dependency man-

agement process in Apache projects [15] found that if the

number of projects in the ecosystem grows linearly, the

dependencies among them grow exponentially. Bavota et al.

[16] also find that new releases often do not contain updates

to their dependencies. Dependencies are updated only if major

new features or bug fixes are released for the dependencies.

Kula et al. [17] measure latency to adopt new versions among

a sample of Java projects that use Maven. They conclude that

over time, the maintainers become more trusting and update

faster, although no reason is known for this behavior. Cox

et al. [2] measure dependency freshness in 75 different closed

source projects of 30 different vendors. Their findings indicate

that projects with low dependency freshness are more than four

times likely to include a security vulnerability.

Besides programming language ecosystems, previous re-

search studied the Debian package ecosystem, how to resolve

strong dependencies in it, and how to improve the planning of

dependency changes [18], [19], [20], [21].

Vulnerabilities. Hejderup [3] studies vulnerability spread-

ing across npm packages. He uses information about known

vulnerabilities, tracks how long it takes for projects to update

from a vulnerable version and shows that vulnerabilities can

affect projects through dependencies. He also observes that

some of the projects have a discussion in the issue tracker

about vulnerable dependencies that need updating. Through

qualitative analysis, he finds that developers were not aware

of the vulnerabilities and the risk of breaking functionality is

what holds back blindly updating vulnerabilities.

Cadariu et al. [22] propose a tool to track known vulnera-

bilities in Java projects. They conduct a case study on private

Dutch enterprise projects and find that 54 out of 75 projects

use at least 1 (and up to 7) vulnerable dependency.

Synthesis of related work. The three research questions

proposed in this paper have received attention in the context of

231103103103

Authorized licensed use limited to: Technische Universitaet Berlin. Downloaded on December 23,2023 at 19:45:21 UTC from IEEE Xplore. Restrictions apply.

existing research. There are similarities with existing research,

but none of them fully covers the scope and problem of this

paper. Wittern et al. [8] and Decan et al. look at the network

topologies for npm, PyPI (Python) and CRAN (R). Compared

to [8], our work considers the network analysis in more detail

and includes applications in the network analysis step. Com-

pared to [9], [10] we also focus on the network evolution and

outline more accurate dependency network model. Hejdreup

[3] studies vulnerability spreading among npm projects. Our

work analyses the whole ecosystem and includes evolution

analysis to study if over time such vulnerabilities will become

less or more likely.

III. RESEARCH QUESTIONS

We have formulated three research questions to guide our

research. The overall motivation is to analyze structure and

evolution of dependency networks to get insight into current

dependency usage and possible issues. Next, we explain the

motivation behind each research questions in more detail.

RQ1 (Structure). Currently, not much is known about

the static properties and topologies of programming language

package ecosystems. For example, we know to what extent

dependencies are used in packages only [8], [9]. However,

we do not know if there are differences in dependency

usages across published packages and applications? Modern

package managers allow different conventions for specifying

dependency version numbers such as exact version or version

range. However, we do not know what the most popular way of

specifying dependencies is. Answers to these questions enable

us to understand the current state of dependency ecosystem

and would be the starting point for analyzing ecosystem

evolution.

RQ2 (Evolution). Software projects can add new depen-

dencies and update existing dependencies. Changes in de-

pendencies in a new release of a single package will also

be reflected in the overall dependency network. Studying the

dependency network evolution since its creation can explain

the current state and also provide knowledge to reason and

make predictions about its future evolution. Need for such

analysis was outlined by respondents to a recent survey on

software ecosystems challenges [23]. One of the answers

given by respondents stated: if an ecosystem is not able to
evolve quickly it is going to die [23]. Similarly, our goal

is to understand the current evolution state of the studied

ecosystems and analyze if they are growing or stabilizing.

RQ3 (Vulnerability). When selecting a package use, several

factors are important besides the functionality it provides.

Developers ideally would like to be sure that the package

quality is good, it is maintained, and is trustworthy. As these

properties are not explicitly visible, developers might end up

using packages of varying quality. For example, if an attacker

publishes packages with names very similar to the names of

popular packages, developers making a typo could end up

using them unwillingly [24]. The left-pad incident happened

because the developer decided to remove the package. How

vulnerable are ecosystems to such scenarios? We define vul-

nerability as the number of projects that are affected if we

remove a package or a specific version of it. This scenario also

helps to estimate what fraction of the dependency network is

impacted if a package contains a bug. Such information could

be incorporated in measuring package importance with regards

to vulnerability in an ecosystem.

IV. METHOD

In the following section, we describe the data collection

method, preprocessing steps and our approach for modeling

dependency networks using graphs.

A. Context

In this work, we study three package ecosystems for the

programming languages, i.e., JavaScript, Ruby, and Rust. We

chose these three languages as the majority of their packages

and applications are hosted on GitHub. These languages

have central repositories for hosting packages, namely npm,

RubyGems, and Crates. Developers specify required pack-

ages in their project’s dependency files (package.json,
Gemfile, Cargo.toml) and packages are retrieved by

the dependency manager (npm, Bundler, Cargo). The packages

contain source code and developers can use functionality from

packages in their project. In addition to packages, we study

applications download from GitHub. By adding applications,

we can analyze package usage from the end-user viewpoint.

We chose to study JavaScript and Ruby, both dynamically

typed languages popular choices for among web application

development. Rust, on the other hand, is a multi-paradigm

language that supports static typing primarily meant for sys-

tems programming. JavaScript and Ruby have been used since

the 1990s and their corresponding central package managers

appeared in 2010 and 2004. Rust first appeared in 2010 and

its central package management in 2014. Our analysis of

JavaScript revolves around the packages used in the node.js
environment and managed through npm tool, but also includes

packages only needed for web development, such as front-end

frameworks. JavaScript differs from the other languages used

in the study as it supports multiple versions of a project in

its dependency chains. For example, if package A depends

on package B version 1.0 and package C version 2.0, and

package B depends again on package C version 3.0, then

npm downloads both versions of the package C. Rust and

Ruby do not allow such scenario and a single version of

package C is required. In practice, JavaScript developers can

have more freedom in including dependencies, but Rust and

Ruby developers need to make sure their dependencies do not

conflict.

B. Data collection

We used multiple sources for composing the dataset. For

JavaScript and Ruby, we downloaded the full list of packages,

release dates, dependencies, and other relevant meta-data from

their central repositories, npm and RubyGems respectively.

For getting data from npm, we used the public API [25].

232104104104

Authorized licensed use limited to: Technische Universitaet Berlin. Downloaded on December 23,2023 at 19:45:21 UTC from IEEE Xplore. Restrictions apply.

For RubyGems, we used a copy of their meta-data database

available on-line [26].

Central repositories such as npm and RubyGems host only

projects that are typically libraries, frameworks, command line

applications or resource bundles for web development. We

also include end user applications from GitHub in our study

to understand the package usage in practice. We used the

GHTorrent [27] database of March 2016 to select projects

whose repository language identified by GitHub was either

Rust, JavaScript or Ruby, were not forks, and the project

GitHub repository did not appear in the npm or RubyGems
hosted project list. After composing the initial list of projects,

we made an HTTP request to every repository to check if it

had a dependency file in the root folder of the latest revision.

We only cloned repositories that had a dependency file present

in the latest revision. For Rust, we cloned all projects listed

in GHTorrent, but for JavaScript and Ruby, we only cloned

those that either had at least one fork or at least one star, to

minimize the number of projects to collect. We acknowledge

that we were not trying to collect all the projects from GitHub.

Rust has a central repository called Crates.io, but the meta-

data is not available from there in a structured machine-

readable format. Therefore, for Rust, we only rely on the

packages from GitHub by first selecting all Rust language

projects from the GHTorrent database and then filtering out

those that do not have a dependency file named Cargo.toml.
The Rust data can be considered as a sample of the whole

package universe of Cargo and additional applications written

in Rust.

Data collection took place during April and May 2016. We

collected the package repository data after collecting applica-

tions from GitHub. We excluded all updates and changes after

April 2016, to get a comparable time scale for all ecosystems.

C. Parsing GitHub projects

The projects obtained from GitHub have their dependency

information recorded in dependency files. To extract depen-

dencies, we consider all revisions of the dependency files to

recover the dependency history. We used the git log command

to extract all changes to the dependency file. For accurate

modeling, we had to know when each version of a project

was released. JavaScript’s package.json and Rust’s cargo.toml
provide explicit version information of the project. Ruby’s

dependency files (.gemspec and Gemfile) are written in Ruby

code and sometimes the version number is expressed as

a variable or read in from a file. This makes reading the

exact version numbers hard, as there is no general pattern.

Extracting this is therefore not feasible, as it would require

manual inspection or executing the code. In cases we could

not extract explicit version numbers, we used the time of the

last modification of the dependency file. This only affects

applications and does not impact the dependency network

structure as they do not have dependents. The limitation of

this approach is that there might be many more revisions

than actual releases. If multiple revisions of a dependency

file exist with the same version number, we use the latest

revisions for the version. Developers might change contents

of the file during development with the new version number

already entered but after the release the contents will not

change.

D. Resolving dependencies

When parsing dependency files, we encountered situations

where some of the dependencies were not available. A depen-

dency might not be available in a case where a single revision

of a dependency file committed to the repository contained

typos or incorrect version constraints, thus the dependency

does not exist. We only kept those dependencies that we could

match in the central repositories for JavaScript and Ruby. For

Rust, we kept all dependencies we could match among the

projects as we did not use official package repository data. If

a dependency is specified as a reference to a git source code

repository, we only kept this in the case of Rust projects and

the repository was in the list of collected projects.

Dependency version constraints can be specified in dif-

ferent ways, for example as exact version, latest version or

pattern based matching using the semantic versioning nota-

tion. A version number is typically written in the format of

MAJOR.MINOR.PATCH. An increase in the MAJOR number

denotes incompatible API changes, an increase in the MINOR
number indicates an addition of backward compatible changes,

and an increase in the PATCH number indicates a bug fix.

A version requirement specification has specific notations for

describing valid version. JavaScript and Rust support similar

notation formats. To obtain any version or the latest version,

the requirement should be specified as the wild-card (*) or

with an explicit condition (≥ 0). The tilde operator (˜) matches

the most recent MINOR version. For example ˜3.0.3 matches

the highest version in the range [3.0.3, 3.1), but will not

match 3.1. The caret (ˆ) will select the most recent MAJOR
version (the first number). For example, ˆ1.2.3 matches highest

version in the range [1.2.3, 2.0). Ruby does not support the

tilde and the caret directly, but has something similar called

the pessimistic operator, expressed by ∼>. For example,

∼> 3.0.3 is equivalent to ˜3.0.3. Requirement ∼> 1.1 is

equivalent to ˆ1.2, i.e., matches the highest version in the range

[1.2.3, 2.0).
For network construction, we must be able to represent the

state of dependencies as they were at the time a package was

released or an application was committed to the repository.

With inexact version requirements the actual version that might

be included in the project might differ every time the project

is built, as a more up-to-date version of a dependency that

satisfies the requirements might have become available. We

resolved all dependency version requirements to the version

that would have been used when the package was released or

a GitHub commit was made. Therefore, we knew when the re-

lease was made and also could trace back which packages and

versions were available at that time. For JavaScript projects,

we used the package semver to find for each dependency the

highest version candidate available. For Ruby projects, we

used Gem library code for finding the latest revision among

233105105105

Authorized licensed use limited to: Technische Universitaet Berlin. Downloaded on December 23,2023 at 19:45:21 UTC from IEEE Xplore. Restrictions apply.

A
0.1

C
0.4

B
0.3

C
0.5

D
0.2

A

C

B

D

A

C

B

D

[{s=0.3,t=0.5}]

[{s=0.4,t=0.2}]

[{s=0.1,t=0.4}]

actual with edge attributesaggregated

E
0.1 E E

[{s=0.5,t=0.1}]

Fig. 1. Dependency network construction approaches

all matching candidates. For Rust, we implemented our own

dependency resolution.

Dependency version resolution did not take into account

transitive dependencies and possible version conflicts. We are

aware that in practice, some other version might have been

chosen. To resolve all dependencies we would have needed

to re-implement the corresponding language dependency res-

olution algorithm because dependency management tools do

not support resolving dependencies as they would have been

resolved at any arbitrary time in the past.

E. Network construction

When modeling a system with a network, we need to define

what nodes and edges represent. A straightforward approach

to represent dependency relations in networks is to model

projects as nodes, and directed edges between them denote

dependencies between projects. The limitation of this solution

is the lack of differentiation between project versions and

thus this modeling approach could give misleading informa-

tion about the network. Figure 1 illustrates three different

approaches for network modeling. Packages A and B depend

on different versions of C, but only C version 0.4 depends on

D. The aggregated network model would indicate that package

B is dependent on package D, which is not true. The number

of different packages dependent on D is two (A and C) in the

actual network, but aggregated version would give us three

projects (C, A, and B). We also studied an approach where we

annotate network edges with attributes. We have a list of pairs

(source version, target version) for which this edge is valid.

When traversing the network, we have to make sure that the

target version on the edge that was used to access the node

has a corresponding source node for taking the next step. For

evolution analysis, both aggregated network and aggregated

network with attributes are unsuitable. If we want to answer

questions such as what is the number of transitive dependen-

cies, we have to consider all project versions. A new release

of a project can update its dependencies, thus increasing the

connectivity in the aggregated graph. For example, all versions

of the aggregated graphs (Figure 1) would give us that project

C has two dependencies, however, at any time it only has one.

Considering this, it might affect all the projects and we would

get a more connected graph than the actual and the number

of dependencies would not reflect the actual value.

We chose an approach where a node represents a specific

project version. The edges denote dependency relations be-

tween specific versions (Figure 1, actual). With this modeling

approach, we can have correct answers to queries such as how

many different versions depend on a project and how many of

these are unique projects.

In our analysis, we sometimes used the aggregated modeling

version with edge attributes for some calculations. Whenever

we did so, we mention it explicitly in the following. By

analyzing the top 10 projects for JavaScript based on the

number of dependencies, we confirmed that the aggregated

network without edge attributes overestimates the dependency

counts. Therefore we decided to use edge attribute information

when analyzing dependency chains.

Or choice of dependency network model makes it hard to

compare our results with existing research, which uses the

aggregated network without attributes [8], [9]. Only Hejderup

[3] uses a similar approach to our actual network. The differ-

ence is that Hejderup also keeps meta-nodes in the network

to represent a project. Each meta node has links to the

corresponding project’s version node.

We only use projects that have at least one dependency or

one reverse dependency. If a project does not have dependen-

cies nor is a dependency for others, it does not appear in the

network. As soon as a project adds a dependency, it will appear

in the network. Due to this filtering, single isolated nodes can

not exist in the network, while isolated clusters of connected

nodes can.

We kept snapshots of the network for each month. A

snapshot records how the ecosystem looked at the end of the

corresponding month. Snapshots are cumulative, adding new

projects and dependency links. Neither projects nor links are

ever removed. All analyses involving the temporal evolution is

also cumulative, i.e., if we calculate some property at a specific

time, we calculate the property for all the projects published

until that point.

We manually removed three projects from our dataset that

appeared to be outliers. Two JavaScript applications and one

Ruby package had been engineered so that they would contain

all possible packages in their dependency file.

V. RESULTS

A. Description of dependency networks (RQ1)

In this subsection, we describe the data sets and basic

properties of the dependency networks.

1) Static properties: Table I lists basic properties of the

language ecosystems used in our study, the number of projects

initially collected, and different releases in the network.

We initially collected 11037 Rust, 339453 JavaScript, and

184919 Ruby projects. However, not all packages have depen-

dencies or are used as a dependent, and therefore we exclude

those projects in the network based analysis. The exclusion

was based on the latest snapshot and included projects that

never had any dependencies. The final dataset comprises 7978,

246670 and 147449 projects for Rust, JavaScript, and Ruby

correspondingly.

234106106106

Authorized licensed use limited to: Technische Universitaet Berlin. Downloaded on December 23,2023 at 19:45:21 UTC from IEEE Xplore. Restrictions apply.

TABLE I
SUMMARY OF DATASETS

Projects in the network Initially collected
Projects Dependencies Applications Packages Version Version dependencies Applications Packages

Rust 7,978 25,144 0 7,978 22,105 66,055 0 11,037
JS 246,670 1,182,114 78,657 168,013 1,319,919 7,260,426 84,987 254,466
Ruby 147,449 776,061 69,544 77,905 1,231,480 10,747,737 62,133 122,786

TABLE II
MEAN (MEDIAN) NUMBER OF DEPENDENCIES AND DEPENDENTS

Transitive Direct
Dependencies Dependents Dependencies Dependents

JS 54.6 (17) 15.5 (0) 5.5 (3) 1.3 (0)
Ruby 34.1 (22) 6.4 (0) 8.7 (4) 1.2 (0)
Rust 9.3 (5) 7.4 (0) 3.0 (2) 1.6 (0)

Table II lists the number of dependencies and dependents

(reverse dependencies) per release. Comparing languages, we

see that Ruby projects have more direct dependencies on aver-

age (8.8) than JavaScript (5.5) and Rust (3.0). The differences

in the number of direct dependents are smaller, i.e., 1.2, 1.3,

and 1.6, respectively. However, we again see larger differ-

ences across transitive dependencies and transitive dependents

(the average number of projects that depend on a project).

JavaScript has the largest amount of transitive dependencies

and dependents, 54.6 and 15.5, respectively. Ruby has 34.1 and

6.4, and Rust 9.3 and 7.4, respectively. The number of transi-

tive dependents for JavaScript is almost two times larger than

for other languages. Ruby has the highest average number of

direct dependencies and Rust has the highest number of direct

dependents. Differences in the amount dependencies across

ecosystems reveal that the internal structures of dependency

networks are different across ecosystems. JavaScript’s large

dependency count could possibly be attributed to tool support

for different versions of a single package in dependencies.

2) Direct and transitive dependents: The left-pad inci-

dent had a high impact not because it was directly used in

many projects but indirectly, through transitive dependencies.

Figure 2 shows the relationship between the total number

of dependents (direct and transitive dependents) and direct

dependents for all projects at the beginning of April 2016. For

all ecosystems, we can see that there exist projects that have a

small amount of direct dependents (less than 100) and a large

number of transitive dependents. We can see that this pattern is

stronger in JavaScript (Figure 2b) and Ruby(Figure 2b) than

for Rust. Ruby also exhibits a clear pattern with a package

having an equal amount of direct and transitive dependents,

meaning that a package is only involved in direct dependencies

but not transitive ones.

3) Weakly connected components: Even though we limited

our analysis to projects that have at least one dependency

relation, the ecosystems under study are not fully connected

TABLE III
DISTRIBUTION OF VERSION UPDATE COUNTS

Type 5p median mean 95p max

explicit JS Package 1.0 1.0 1.06 1.0 69.0
Application 1.0 1.0 1.37 3.0 253.0

Ruby Package 1.0 1.0 1.19 2.0 96.0
Application 1.0 1.0 1.53 3.0 343.0

Rust 1.0 1.0 1.19 2.0 62.0
implicit JS Package 1.0 1.0 1.11 2.0 66.0

Application 1.0 1.0 1.70 4.0 280.0
Ruby Package 1.0 1.0 1.91 6.0 95.0

Application 1.0 1.0 2.17 6.0 344.0
Rust 1.0 1.0 1.44 4.0 63.0

for Rust and JavaScript. We calculated the number of weakly

connected components in the dependency graphs for all lan-

guages. A weakly connected component in a directed graph

is a subgraph where each node is connected with every other

node in the subgraph via an undirected path. We observed the

emergence of a giant weakly connected component in each

of the three analyzed ecosystems. For Rust, JavaScript and

Ruby, 96.14%, 98.2%, 100% of projects belong to the largest

weakly connected component in the latest snapshot. Many

real-world networks such as social networks exhibit the giant

component property [28]. The remaining projects are part of

components with a small number of projects. The existence of

a giant component illustrates the fact that existing packages,

even being developed by different developers, can be used

together in applications. The ability to be used together makes

the ecosystem valuable.

4) Dependency updates and constraint notation practices:
We define explicit dependency version change as a manually

changed version constraint for a dependency by a developer.

The number of explicit changes is similar across ecosystems

(Table III). The number of implicit changes denotes the num-

ber of times a dependency was resolved to a different version

after each project release or dependency file commit, but

without modifying the dependency requirement specification.

An implicit update happens when dependencies are specified

with flexible constraints, and there are newer versions released

matching the constraints. The number of implicit updates has

a larger variation across projects, with the highest mean of

2.17 for Ruby, 1.7 for Rust, and 1.44 for JavaScript. The

mean number of implicit updates for the published packages

are smaller than for applications, 1.91 and 1.1 for Ruby and

JavaScript. We also see that the maximum values for both

explicit and implicit updates are larger for applications which

235107107107

Authorized licensed use limited to: Technische Universitaet Berlin. Downloaded on December 23,2023 at 19:45:21 UTC from IEEE Xplore. Restrictions apply.

� ����������������������������

	
��
��������
����
�
��
���

�

�����

�����

�����

�����

������

�
�

��
��
�

�

�

��
�
��

�

�

�

�

�
��

��������
���
���������

�����������

������� �����

����
!������!�
�
"������

���
!
���!��������
������#������

�
�
�������

����
��������

��#�����$��

��
�����
�����

������������

"��
������ �

���
����������

��
!����
������

(a) JS

� ���� ���� ���� ����������

	
��
��������
����
�
��
���

�

�����

�����

�����

�����

�����

�
�

�	

�
�

�

�

��

�
��

�

�

�

�

�
��

��

�
��	�
�������

�	���������
����������

�	��������

����

��	�
�������

�
���������

��
�������

�
���
����������

(b) Ruby

� �������������������������������

	
��
��������
����
�
��
���

�

���

����

����

����

����

����

�
�
��
��
�

�
�

��
�
��
�

�

�
�

�
��

���������

����������

������������ ����������

����������

���
�������

�
���!�
������
�������

���������

����������

���
�������

����������
����������

������������

�
���!�
������
�������

(c) Rust

Fig. 2. Relationships between the number of direct dependents and total dependents in April 2016. A sample of project names are plotted.

can be explained by higher velocity in development as these

projects do not have dependents. For both types of projects,

packages and applications, Ruby seems to have higher update

counts which can be explained by longer history. Another

insight is that there are more implicit updates than explicit, in-

dicating dependencies are updated more often than a developer

would manually do this. In the following, we analyze more

closely the popular ways of specifying dependency version

requirements that lead to implicit updates.
Table IV lists the relative popularity of each requirement

specification scheme in each ecosystem. Note that we distin-

guish here also between published packages and applications.

The different ways to specify versions are: any or latest version

(any), exact version (exact), explicitly specified version range

such as [2.0, 4), and one-sided ranges (range), the most recent

minor version (tilde), the most recent major version (caret) or

anything else, such as manually specified git version (other).
The dominating approaches for Rust version specifications

are exact and any versions, used in 32% and 47.8% of

the cases. Besides these, all different possible schemes for

specification are used by developers. Rust developers prefer to

specify specific versions or latest versions, as the ecosystem

is growing.
Among the most popular approaches for JavaScript are the

caret, exact, and the tilde notation. Exact versions are used

only in 22% of the cases for different JavaScript projects.

The difference between JavaScript GitHub projects and pub-

lished packages is non-existent, whereas for Ruby, there are

differences in the fraction of exact versions and range based

specifications. We looked more into range usage in packages

and found that a most of range specification in published pack-

ages comes from specifications that require larger than specific

major version. We used Pearson’s chi-squared test to confirm

that Ruby’s applications and published packages have different

preferences in specifying version requirements (χ2 = 884540,

df = 5, p-value < 2.2 · 10−16). Ruby also has the least

amount of exact dependencies, which in turn can explain our

observation of Ruby having the highest number of implicit

version updates on average (Table III). In the end, we used

Pearson’s chi-squared on the full contingency table (Figure IV

with absolute values) to confirm that dependency management

preferences differ across languages (χ2 = 8025600, df = 20,

p-value < 2.2 · 10−16).

TABLE IV
RELATIVE POPULARITY OF DEPENDENCY SPECIFICATION NOTATIONS.

Type any(*) caret(ˆ) exact other range tilde(˜)
Ecosystem

JS Application 0.047 0.498 0.221 0.005 0.019 0.210
JS Package 0.037 0.536 0.217 0.007 0.029 0.174
Ruby Application 0.583 0.157 0.135 0.000 0.063 0.062
Ruby Package 0.360 0.178 0.070 0.000 0.249 0.143
Rust 0.320 0.034 0.478 0.109 0.007 0.052

2005 2007 2009 2011 2013 2015

100

101

102

103

104

105

106

107

108

C
o

u
n

t

JS N

JS NV

JS E

JS EV

Ruby N

Ruby NV

Ruby E

Ruby EV

Rust N

Rust NV

Rust E

Rust EV

Fig. 3. Number of unique projects (N), dependencies between projects (E),
the number of versions (NV) and dependencies between versions (EV).

B. Dependency network evolution (RQ2)

In this subsection, we will look in more detail the evolution

of the dependency networks.

1) General growth: To understand how the ecosystems are

growing, we first analyzed the number of projects and de-

pendency relations between them. Figure 3 shows the number

of projects and unique relations in the dependency network.

We also show the number of releases and the number of

dependency links between them. We see that in almost all

cases, the speed at which the number of relations is growing is

getting faster compared to the number of nodes in the network,

especially visible for JavaScript (JS N on Figure 3), where the

difference between the number of projects and dependencies

is tenfold. The figure also indicates the growth of Rust is

still continuing. JavaScript has become larger than Ruby, both

in terms of versions and dependencies between versions. The

236108108108

Authorized licensed use limited to: Technische Universitaet Berlin. Downloaded on December 23,2023 at 19:45:21 UTC from IEEE Xplore. Restrictions apply.

growth of Ruby in general is leveling off and becomes steady,

whereas JavaScript is growing even at accelerated rate.

Figure 3 highlights the size differences when analyzing ac-

tual networks and aggregated networks with annotated edges.

There is more than ten times difference between the number

of nodes and edges in both networks and the difference

is growing. Therefore, there are differences in the network

structure which confirms our initial discussion on the choice

of network modeling approach.

As the ecosystem is composed of multiple projects, we next

analyzed the project level changes in dependencies. What is

the number of dependencies and dependents for projects and

the full size of the transitive dependency chain? Figure 4a

shows the number of dependencies and dependents for each

project release. We see a faster growth for the number of de-

pendents in Ruby and JavaScript. The number of dependencies

has been growing at a slower rate. When comparing JavaScript

and Ruby, we see that the difference between the number

of dependents is larger than the number of dependencies.

One possible explanation could be that the overall number

of packages published in RubyGems is smaller than in npm
and there are fewer alternatives for packages, leading to higher

number of dependents.

Figure 4b shows the total amount of dependencies for each

project release. We observe fast growth for JavaScript projects

and slower, steadier growth for Ruby and Rust projects. The

average size of total dependencies for JavaScript was 34.3 in

April 2015 but grew to 54.6 in April 2016, more than 60 %

yearly growth. Growth at such speed is unlikely to continue

and most likely will be lower in the future.

When comparing JavaScript’s and Ruby’s numbers of direct

dependencies (Figure 4a) and the total amount of transitive

dependencies, we see that JavaScript projects have more

transitive dependencies, but less direct dependencies. This

behavior indicates differences across these two ecosystems.

Ruby has packages that are used mostly by applications and

do not have dependencies themselves, but JavaScript published

packages have dependencies themselves, making the ecosys-

tem more connected and complex. One possible explanation

for JavaScript’s larger amount of transitive dependencies is the

fact that npm allows multiple versions of the same project to

be included through transitive dependencies.

Judging by these observations, it is hard to predict the exact

number of transitive dependencies for Rust as both Ruby and

JavaScript have shown different behavior. We argue that this

may be because Rust is a very new ecosystem at its initial

stages of evolution.

2) Conflict evolution: The ecosystems keep growing and

the number of dependencies between projects is also growing.

We analyze next what is the number projects that have a

single dependency included through multiple packages, which

could leave to conflicts if the package version requirement

specification would not match.

We define a dependency overlap as a situation when a

project appears as a dependency through multiple different

paths for a single project. In practice, overlap could lead to

conflict, which would occur only if the version specification

would not match and it would not be possible to find the best

matching version. Dependency overlap illustrates how much

dependencies are co-used in projects. On the other hand, it

illustrates the need for consistent usage of version number

specification by package maintainers. Increasing dependency

overlap should give developers a signal to look their de-

pendency version requirements and use as loose criteria as

possible, to allow dependency managers to find a suitable

version.

Figure 4c lists the fraction of projects that have dependency

overlap in their dependency chains. The overall trends are sim-

ilar to the overall growth of the ecosystems. More than two-

thirds of Ruby and half of JavaScript projects have a single

dependency appear through multiple dependency chains. The

result indicates package reuse, but also the event of depen-

dency version conflicts might become more likely. Increasing

overlap can lead to issues which prevent different packages to

be used together due to not satisfiable dependencies. Similar

behavior has been observed for Debian software packages

[29].

C. Fragility and vulnerability (RQ3)

Next we analyze dependency network tolerance to a removal

of a single project or a single release. We define vulnerability

of a package as the fraction of the network nodes that is

impacted by a removal of a single package or a single package

version. This approach enables to analyze the impact of

incidents such as the left-pad project removal. While complete

removal of a project removes all versions from the dependency

networks, we can also study removal of a single version. For

example, bugs or security vulnerabilities might not impact all

project version, only selected specific of them might contain

the bug.

We first calculate the vulnerability on the network where

each node denotes the different version. For each package

version, we calculate the number of total dependents. Next,

we have the list with the number of total dependents for all

packages. Among this list, we look at the maximum value

and the 90th percentile value. We chose these values as the

distribution of the number of dependents is skewed and the

median value is typically either 0 or 1 depending on the

snapshot date.

Figure 5a shows the maximum and 90th percentile vulner-

ability score normalized with respect to the full network size

at each snapshot. We see that the maximum is fluctuating and

having a positive trend, which means that there is a version in

the network which importance is growing. Looking at the 90th

percentile value, we see decreasing trend, which indicates that

most of the other packages int he ecosystem are not central

and are not included in the majority of dependency paths.

We also look at the vulnerability on the aggregated graph.

Figure 5b shows the same vulnerability calculation on the

aggregated network, meaning we remove a project and all its

versions. It is evident that the maximum score is growing and

impact a single project is growing. This is even interesting

237109109109

Authorized licensed use limited to: Technische Universitaet Berlin. Downloaded on December 23,2023 at 19:45:21 UTC from IEEE Xplore. Restrictions apply.

2005 2007 2009 2011 2013 2015

0

2

4

6

8

10

12

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
p

ro
je

c
ts

Dependents JS

Dependencies JS

Dependents Ruby

Dependencies Ruby

Dependents Rust

Dependencies Rust

(a) Evolution of the number direct dependen-
cies and dependents for each project version.
Average over those that have at least one
dependency or one dependent.

2005 2007 2009 2011 2013 2015

0

10

20

30

40

50

60

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
to

ta
l
d

e
p

e
n

d
e

n
c
ie

s

JS

Ruby

Rust

(b) Average number of total dependencies,
including the full transitive closure. Average
calculated over projects that have at least one
dependency.

2005 2007 2009 2011 2013 2015

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
e

p
e

n
d

e
n

c
y
 o

v
e

rl
a

p
 r

a
te

JS

Ruby

Rust

(c) Dependency overlap evolution. Fraction
of projects having at least one dependency
required through multiple projects.

Fig. 4. Dependency network evolution

in the context of growing ecosystems, the absolute values are

also increasing therefore. The 90th percentile vulnerability is

again decreasing.

To find differences between packages and application, we

analyzed the mean vulnerability rate for different types of

JavaScript and Ruby projects. Figure 5c shows the average

number of projects affected by a single package removal. The

figure illustrates the dependence on a single package. We see

that right after the creation of the package ecosystem, it starts

to decrease. In a later phase, the positive trend of JavaScript

is more visible. The average number of impacted applications

remains larger than the packages.

Table V list the top five releases based on unique dependent

projects and unique dependent releases. For JavaScript, the

list is composed of unique utility packages, such isarray or

inherits. For Ruby and Rust we see that multiple versions of

a single packages have made to the top lists. The top five

packages for ruby are related to webserver (rack) or templates

(erubis, tilt). Rust packages are interface to system level types

and libraries (libc), a serialization library (rustc-serialize), and

a logging library(log).

VI. DISCUSSION

Below, we discuss our results, their practical implications,

compare results with the related work and outline limitations

of the research. The results differ to some extent for all studied

languages, but generalizing conclusions can be brought out.

A. Results

Network modeling. Previous research on package depen-

dency networks has not found an agreement on how to model

dependencies using graphs. We propose an approach for mod-

eling and constructing the network from dependency data. We

believe that the chosen approach captures the actual network

most accurately, enabling us to analyze dependencies on their

version level. Although the analysis of aggregated network

can yield similar conclusions [10], the real dependencies

are still using version information and in future evolution

stages it might not be sufficient anymore. We believe that our

contribution in network modeling is a single step forward more

unified software dependency network modeling.

Structure. Analysis of dependency network structure re-

veals differences between ecosystems. Although this has been

observed before [9] for the dependencies, we have also shown

differences in dependency version constraint specifications

across ecosystems. The findings complement previous research

[14] that found that different ecosystems approached API

changes differently, which could impact dependency manage-

ment. Our findings indicate that there are more implicit version

updates than explicit, which suggests that there may be a need

for tools to automatically monitor the dependencies that are

included through implicit updates and reveal possible breaking

API changes.

Evolution. Our evolution analysis revealed that the amount

of transitive dependencies for JavaScript projects has been

growing over 60% over the past year. A large amount of

dependencies can lead to issues such as extended build time

because of fetching the dependencies and increased software

package size. Exponential growth has been observed inside

Apache ecosystem as well [15]. Recently, a newer dependency

management tool compatible with npm was introduced [30].

One of the key new functionality is improved concurrent

dependency download. The tools tries to solve the depen-

dency abundance problem by providing a faster download.

Alternatively, a future solution could study how to reduce

dependencies by better static code analysis. Our finding il-

lustrates that observing network evolution, such troubles can

be anticipated. Analysis of trends and number of transitive

dependencies over time could be useful for other package

based language ecosystems.

Vulnerability. Our vulnerability analysis, inspired by the

left-pad incident [5], reveals that each studied ecosystem has

packages whose removal could impact up to 30% of the other

packages and applications. We showed that ecosystems have a

few central packages that they depend on, which could enable

bug spreading if they are not up to date. The high vulnerability

score of a package should also alert developers and maintainers

to make sure all security bugs are fixed quickly. A package

with a high vulnerability score can be of interest to attackers

as an opportunity to exploit projects depending on it.

238110110110

Authorized licensed use limited to: Technische Universitaet Berlin. Downloaded on December 23,2023 at 19:45:21 UTC from IEEE Xplore. Restrictions apply.

2005 2007 2009 2011 2013 2015

10-6

10-5

10-4

10-3

10-2

10-1

100

V
u

ln
e

ra
b

ili
ty

 r
a

te

90% JS

Max JS

90% Ruby

Max Ruby

90% Rust

Max Rust

(a) Relative vulnerablity with respect to the
actual dependency network size. The network
size is the number of releases.

2005 2007 2009 2011 2013 2015

10-6

10-5

10-4

10-3

10-2

10-1

100

V
u

ln
e

ra
b

ili
ty

 r
a

te

90% JS

Max JS

90% Ruby

Max Ruby

90% Rust

Max Rust

(b) Relative vulnerability with respect to the
total number of unique projects in the network

2005 2007 2009 2011 2013 2015

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

V
u

ln
e

ra
b

ili
ty

 r
a

te

Application mean JS

Package mean JS

Application mean Ruby

Package mean Ruby

(c) Relative vulnerability among published
packages and GitHub projects

Fig. 5. Vulnerability of the ecosystems

TABLE V
TOP PROJECTS BASED ON TRANSITIVE DEPENDENTS(UNIQUE PROJECT RELEASES)

JavaScript Ruby Rust
package direct transitive vulnerability package direct transitive vulnerability package direct transitive vulnerability

inherits 2.0.1 8131 499254 0,38 erubis 2.7.0 9014 519555 0,42 libc 0.1.1 44 5520 0,25
isarray 0.0.1 727 384907 0,29 rack 1.4.1 4707 490329 0,40 rustc-serialize 0.3.16 1651 5379 0,24
core-util-is 1.0.1 524 371871 0,28 rack-test 0.6.2 1566 386937 0,31 libc 0.2.1 141 4840 0,22
string decoder 0.10.25 39 303116 0,23 rack 1.3.10 3248 362810 0,29 libc 0.1.4 79 4598 0,21
sigmund 1.0.0 256 283319 0,21 tilt 1.3.3 2084 359862 0,29 log 0.3.1 1030 4415 0,20

B. Design implications

By using our findings, one could design a better package

ecosystem and dependency management tooling. First, we

would propose making dependency relations explicitly visible

to understand the importance of packages in the ecosystems.

Having an up to date view which packages are most popular

and important in the ecosystem can make sure they receive

maintenance and support effort from the community.

We would also investigate alternatives to semantic version-

ing to allow stricter dependency specification and version

numbers from packages to help to minimize dependency

conflicts. Overall, the ecosystem and tooling should improve

awareness of what dependencies are used, make dependency

listing explicit and help to minimize irrelevant dependencies.

C. Limitations

The limitation of our dependency network construction ap-

proach is that it will not compose the exact representation that

the build tool would have. When resolving wildcard version

specifications to a matching version, we look all dependencies

separately for given projects. In practice, when using build

tools, the whole transitive closure of dependencies would

be resolved and if a package is included through multiple

paths, a matching version would be calculated that shares all

requirements. To recreate the exact dependencies for a project

historically is complicated as dependency management tools

do not support backdated retrieval.

VII. CONCLUSION AND FUTURE WORK

The main contributions of this paper are: (i) an approach

to extract dependency networks from public (open-source)

repositories; and (ii) an analysis of the dependency networks

of JavaScript, Ruby, and Rust. The latter analysis shows

that these ecosystems are alive and growing, with JavaScript

having the fastest growth. JavaScript also exhibits the largest

amount of transitive dependencies per project among the

studied languages. All ecosystems have a subset of popular

packages used in the majority of projects. Yet, over time, these

ecosystems have become less dependent on a single popular

package such that a removal of a random project would not

cause ecosystem collapse.

This work opens up possibilities for multiple lines of future

work. The dependency management process should be studied

qualitatively to understand issues developers are facing. Sec-

ond, a measure quantifying dependency health in an ecosystem

should be developed, by combining network data with data

about testing efforts, code analysis, number of maintainers, etc.

The general goal of the future research is to support developers

with tools in dependency management and maintenance and

provide analytics to maintainers about their packages and the

overall ecosystem trends. Our next goal is to turn the code

used in this paper into a set of reusable tools to analyze any

package ecosystem based on GitHub and repository data.

ACKNOWLEDGMENTS

This research is supported by the Estonian Research Council

(Grant IUT20-55) and by the NWO BISO.15.12 CodeFeedr

project.

SUPPLEMENTARY MATERIAL

Datasets used in this research are available at https://github.

com/riivo/package-dependency-networks.

239111111111

Authorized licensed use limited to: Technische Universitaet Berlin. Downloaded on December 23,2023 at 19:45:21 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] P. Mohagheghi and R. Conradi, “Quality, productivity and economic
benefits of software reuse: a review of industrial studies,” Empirical
Software Engineering, vol. 12, no. 5, pp. 471–516, 2007.

[2] J. Cox, E. Bouwers, M. v. Eekelen, and J. Visser, “Measuring depen-
dency freshness in software systems,” in 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, vol. 2, May 2015,
pp. 109–118.

[3] J. Hejderup, “In dependencies we trust: How vulnerable are dependen-
cies in software modules?” Master’s thesis, TU Delft, Delft University
of Technology, 2015.

[4] S. Raemaekers, A. van Deursen, and J. Visser, “Semantic versioning
versus breaking changes: A study of the maven repository,” in Proceed-
ings of the 2014 IEEE 14th International Working Conference on Source
Code Analysis and Manipulation, ser. SCAM ’14. Washington, DC,
USA: IEEE Computer Society, 2014, pp. 215–224.

[5] “left-pad issue #4,” https://github.com/stevemao/left-pad/issues/4, last
accessed 25.01.2017.

[6] P. Tripathy and K. Naik, Software Evolution and Maintenance. Wiley,
2014.

[7] T. Mens and S. Demeyer, Software Evolution, ser. SpringerLink:
Springer e-Books. Springer Berlin Heidelberg, 2008.

[8] E. Wittern, P. Suter, and S. Rajagopalan, “A look at the dynamics of the
javascript package ecosystem,” in Proceedings of the 13th International
Workshop on Mining Software Repositories, ser. MSR ’16. ACM, 2016,
pp. 351–361.

[9] A. Decan, T. Mens, and M. Claes, “On the topology of package
dependency networks: A comparison of three programming language
ecosystems,” in European Conference on Software Architecture Work-
shops, 2016.

[10] ——, “An empirical comparison of dependency issues in OSS
packaging ecosystems,” in IEEE 24th International Conference
on Software Analysis, Evolution and Reengineering, SANER 2017,
Klagenfurt, Austria, February 20-24, 2017, M. Pinzger, G. Bavota, and
A. Marcus, Eds. IEEE Computer Society, 2017, pp. 2–12. [Online].
Available: http://dx.doi.org/10.1109/SANER.2017.7884604

[11] D. M. German, B. Adams, and A. E. Hassan, “The evolution of the
r software ecosystem,” in Software Maintenance and Reengineering
(CSMR), 2013 17th European Conference on. IEEE, 2013, pp. 243–
252.

[12] A. Decan, T. Mens, M. Claes, and P. Grosjeanm, “When github meets
cran: An analysis of inter-repository package dependency problems,” in
23rd IEEE International Conference on Software Analysis, Evolution,
and Reengineering, 2016.

[13] C. Bogart, C. Kstner, and J. Herbsleb, “When it breaks, it breaks: How
ecosystem developers reason about the stability of dependencies,” in
2015 30th IEEE/ACM International Conference on Automated Software
Engineering Workshop (ASEW), Nov 2015, pp. 86–89.

[14] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “How to break an api:
Cost negotiation and community values in three software ecosystems,”
in Proceedings of the ACM SIGSOFT Symposium on the Foundations
of Software Engineering (FSE), ser. FSE ’16. ACM Press, 11 2016.

[15] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella, “How
the apache community upgrades dependencies: an evolutionary study,”
Empirical Software Engineering, vol. 20, no. 5, pp. 1275–1317, 2015.

[16] ——, “The evolution of project inter-dependencies in a software ecosys-
tem: The case of apache.” in ICSM, 2013, pp. 280–289.

[17] R. G. Kula, D. M. Germán, T. Ishio, and K. Inoue, “Trusting a library:
A study of the latency to adopt the latest maven release,” in 22nd
IEEE International Conference on Software Analysis, Evolution, and
Reengineering, SANER 2015, Montreal, QC, Canada, March 2-6, 2015,
2015, pp. 520–524.

[18] M. Claes, T. Mens, R. Di Cosmo, and J. Vouillon, “A historical analysis
of debian package incompatibilities,” in Proceedings of the 12th Working
Conference on Mining Software Repositories, ser. MSR ’15. IEEE
Press, 2015, pp. 212–223.

[19] P. Abate, R. Di Cosmo, J. Boender, and S. Zacchiroli, “Strong de-
pendencies between software components,” in Proceedings of the 2009
3rd International Symposium on Empirical Software Engineering and
Measurement, ser. ESEM ’09. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 89–99.

[20] R. Di Cosmo, B. Durak, X. Leroy, F. Mancinelli, and J. Vouillon,
“Maintaining large software distributions: new challenges from the foss
era.” in Proceedings of the FRCSS 2006 workshop. EASST, 2006, pp.
7–20.

[21] R. Di Cosmo, S. Zacchiroli, and P. Trezentos, “Package upgrades
in foss distributions: Details and challenges,” in Proceedings of the
1st International Workshop on Hot Topics in Software Upgrades, ser.
HotSWUp ’08. ACM, 2008, pp. 7:1–7:5.

[22] M. Cadariu, E. Bouwers, J. Visser, and A. van Deursen, “Tracking
known security vulnerabilities in proprietary software systems,” in 2015
IEEE 22nd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), March 2015, pp. 516–519.

[23] A. Serebrenik and T. Mens, “Challenges in software ecosystems re-
search,” in Proceedings of the 2015 European Conference on Software
Architecture Workshops, ser. ECSAW ’15. ACM, 2015, pp. 40:1–40:6.

[24] “How a student fooled 17,000 coders into running
his sketchy programming code,” https://fossbytes.com/
typosquatting-technique-used-by-student-tricks-17000-coders/,
accessed: 2016-06-19.

[25] “Npm api,” https://registry.npmjs.org/-/all, accessed: 2016-05-01.
[26] “Rubygems api,” https://rubygems.org/pages/data, accessed: 2016-05-

01.
[27] G. Gousios, “The ghtorent dataset and tool suite,” in Proceedings of the

10th Working Conference on Mining Software Repositories, ser. MSR
’13. IEEE Press, 2013, pp. 233–236.

[28] D. Easley and J. Kleinberg, Networks, crowds, and markets: Reasoning
about a highly connected world. Cambridge University Press, 2010.

[29] P. Abate, R. Di Cosmo, L. Gesbert, F. Le Fessant, R. Treinen, and
S. Zacchiroli, “Mining component repositories for installability issues,”
in Mining Software Repositories (MSR), 2015 IEEE/ACM 12th Working
Conference on. IEEE, 2015, pp. 24–33.

[30] “Yarn: A new package manager for javascript,”
https://code.facebook.com/posts/1840075619545360/
yarn-a-new-package-manager-for-javascript/, accessed 2016-10-27.

240112112112

Authorized licensed use limited to: Technische Universitaet Berlin. Downloaded on December 23,2023 at 19:45:21 UTC from IEEE Xplore. Restrictions apply.

